Mobile Learning – A New Success Model

Ahmed Elmorshidy, Ph.D., Claremont Graduate University, USA
Gulf University for Science & Technology, Mishref, Kuwait

ABSTRACT

This study investigates mobile learning, empirical studies in the field, benefits, barriers and applications of mobile learning. The study further introduces a new model for Mobile Learning Success based on the well-established Technology Acceptance Model (TAM) and the McLean and DeLone Information System Success Model.

INTRODUCTION: WHAT IS MOBILE LEARNING?

Researchers define the term mobile learning and its content from various points of view. According to (Skui and Suki 207) Mobile learning is “the new possibilities that are available to people given the mass deployment of devices that everyone now has in their hands and the new connectivity that is coming”. Mobile content is any type of media formatted for mobile phones, like ring tones, graphics, games and movies. Mobile learning can also be defined as any activity that allows individuals to be more productive when consuming, interacting with or creating information mediated through a compact digital portable device that the individual carries on a regular basis, has reliable connectivity and fits in a pocket or purse. (Wagner 2008)

According to Wagner (2008), today’s mobile learning is slowly coming within practical reach of institutions, agencies, and commercial enterprises hoping to support the learning needs and interests of their distributed stakeholders. With the availability of better and more powerful personal digital devices and telecommunications networks, a growing mobile content ecosystem and widespread consumer adoption of said same devices and services, could true “anytime, anywhere” learning and performance support finally be on the horizon. Advances in wireless communication technologies have provided the opportunity for educators to create new educational models.

With the aid of wireless communication technology, educational practice can be embedded into mobile life without wired-based communication. With the trend in educational media becoming more mobile, portable, and individualized, the learning form is being modified in spectacular ways. (Yu and Chieh 2008).

A fourth generation improved mobile communication system is necessary. The 4G system can support more bandwidth than other systems. It has advantages like authentication, mobile management, and quality of service (QoS). According to Yu and Chieh (2008), The fourth generation mobile communication system can use a variety of computer embedded devices to ubiquitously access multimedia information, such as smart phones and PDAs. Most important is that have more bandwidth. Hence, it supply ubiquitous learning environment. So far there have been lots of attempts to define mobile learning, such as “learning that happens when the learner takes advantage of learning opportunities offered by mobile technologies. More promising way towards a theory of mobile seems to be the focus on the clarification of significant issues in research, challenges), case studies or motivational or affective aspects All these attempts contribute to a definition of key characteristics for mobile and sharpen the picture of what constitutes mobile rather than finding a precise definition. (Dirk et al. 2010)

Kukulska-Hulme (2009) stated that “There is no agreed definition of “mobile learning”, partly because the field is experiencing rapid evolution, and partly because of the ambiguity of “mobile” – does it relate to mobile technologies, or the more general notion of learner mobility? In fact both aspects are currently important; in addition, the mobility of content is often highlighted. Mobility needs to be understood not only in terms of spatial movement but also the ways in which such movement may enable time-shifting and boundary-crossing. In the future, when technology is an integral part of our surroundings, it is predicted that we will no longer have to carry a mobile device. Even now, learners tend to move between using desktop computers and mobile devices, and maybe touch-screen displays in public areas, often for
different parts of a learning task. Interactions mediated by technology are interspersed with direct interactions with people. (Kukulska-Hulme 2009)

According to Hahn (2008) “M-learning as a phenomenon has been in process, unintentional progress since the late twentieth century.” The unintended consequence of smaller and faster computing is the enabling of an anywhere and anytime learning. In the course of scientific discovery products are produced which have novel application that are wholly unintentional. This is the unplanned nature of science - phenomena occur and exist before being named and investigated. Students learn through new technology before educators have inquired to their attributes. In this way we now play a game of catch-up. M-learning represents a well-intentioned effort to further assist humanity in the development of its learning. For our highly scheduled, commodified, pressured students, there exists a need for any time anywhere information - structured information that is organized and accessible. Emerging from recent mobile technologies, mobile learning, or m-learning, is beginning to offer 'stunning new technical capabilities' in education. This new genre of learning is viewed as a revolutionary stage in educational technology. By the end of the decade or sooner, the transition to ubiquitous computing will become a pervasive force that changes the ways of human communication. Ultimately, these increasing computing capabilities will fulfill the goal of equitable access, and therefore enhance the processes of learning and teaching. (Hsinyi, et al. 2009)

BENEFITS, BARRIERS AND APPLICATIONS OF MOBILE LEARNING

Many reasons exist as to why mobile technology should be considered as a method to deliver content. There are already a billion phones available in the marketplace. Aagner (2008) indicated that ‘Even with the introduction of high-definition televisions (HDTV) to the marketplace, mobile phone sales dwarf those of HDTVs, cars and PCs combined.’ Thus, phones may be the most promising and ever-expanding method by which to deliver content. Furthermore, the capabilities that already exist via Web browsers, desktop computers, CD-ROMS and other technologies are all becoming possible now (with streaming video in many multimedia formats) on a wide number of phones. More advanced phones will, in time, allow for TV subscribers to view television programming over mobile phones. While this speaks to the market (and the capabilities and functions of these devices), it does not necessarily suggest how this technology can be utilized for learning.

Mobile e-learning environment possesses many unique characteristics as described by (Wu and Chieh 2008) including: Better adaptation to individual needs, ubiquitous and responds to urgent learning need, flexibility of location and time to learn, interactive knowledge acquisition, efficiency due both to re-use and feedback, situational instructional activities and integrated instructional context. According to Kukulska-Hulme (2009), Mobile learning draws our attention to mobility: not just the fact of mobility, but the effects of mobility, which might include new ways of dividing up one’s time and crossing boundaries. With appropriate technology, mobile learners can participate in activities that relate directly to their changing location. Traditionally, location-based learning has included placements, apprenticeships, physical pursuits, and various investigations out in the field; some educational games for children and young adults are also strongly associated with outdoor or location based activity. One key mission of those who are developing mobile learning is to extend these types of learning and enrich them with new possibilities.

Examples of successful mobile learning projects provide another way of understanding the perceived value or contribution of mobile learning. Within the classroom, it has been shown that mobile devices, with appropriate software, can be highly effective in supporting small group collaborative learning, improving on what was possible to achieve without these tools (Zurita & Nussbaum, 2004; Valdivia & Nussbaum, 2007). Mobility may not be an obvious feature here, but the design of the learning activity is predicated on close interaction, conversation and decision-making between members of a group, which includes some physical movement and can be difficult to achieve with the use of fixed computers. (Kukulska-Hulme 2009)

Outside the classroom, mobile and wireless technologies enable learning to be more directly connected with real world experiments and artifacts. The MANOLO project (2006) has demonstrated the advantages of using handheld computers for university-level fieldwork in subjects like archaeology and environmental sciences: the advantages include better use of limited time, greater accuracy of data recording and improved communication. (Kukulska-Hulme
2009). The Ambient Wood project (Price & Rogers, 2004) enhanced a woodland area with experiments for children to explore the effect of light and moisture on habitats. In the MyArtSpace project, school children on a trip to a museum were able to use mobile phones to access multimedia content linked to specific exhibits and then use the facility to send photos, audio recordings and notes captured at the museum to a website which enabled them to share and discuss their findings back in the classroom (Sharples et al., 2007). The Gidder project (Pierroux, 2008) supports and extends collective knowledge building across classroom and museum settings. In advance of a museum visit, students work in groups in the classroom to select from a wiki artworks that interest them, decide which ones they will be focusing on in the museum, and write related labels. At the museum, students explore the exhibition and their selected artworks, and use their mobile phones to send multimedia messages with labelled information to a blog; this information is shared with the rest of the class. Back at school, the groups use the wiki and blog resources to discuss and develop their group interpretations. The audio guides often found in museums, galleries and botanical gardens are increasingly being extended to provide multimedia content and context-based services on handheld computers (e.g. Naismith et al., 2005). In numerous situations, the mobile device acts as a bridge between different sites of learning, some of which are “formal” whilst others are more “informal”.

A traditional conceptualization of the digital library content experience is the a priori assumption that this material will be utilized on a desktop PC. The e-book is not solely for desktop PCs as evidenced by the container paradigm of the .pub file extension whereby the specification authors envision any given book reading device (this need not exclude the most ubiquitous of devices such as iPods or cell phones, which can theoretically host reading systems) to be “reflowable”. The authors behind this specification make the important distinction between e-book content and e-book processors writing that the specification enables publishers to create content in a single format that can then be rendered on a variety of reading devices. Hahn (2008) stated that “The material nature of digital content is an important conceptual - although problematic, frame for the field of mobile digital learning.” Questions that must be considered by librarians are the fundamental assumptions we make about our content and its extensibility into non-library systems. One m-learning research project is designed to be inclusive of libraries as a rather small facet of delivering learning content in course management systems to mobile devices. These distance learning educators envisioned a type of “m-course management system,” where the presence of library like resources is included and of importance for mobile learners. The skills for library resource provisioning to students at a distance have been sharpened by web content librarians. Applications of mobile technology enabling m-learning occur across a wide range of disciplinary space. HCI and medical informatics groups are perhaps most experimental within this domain. Innovations by these professionals will lead to service innovation in libraries. After exploring the implications m-learning means for service innovation generally, this section goes on to review mobile technology use in disparate library types: special, academic and school, and public; initiatives discussed in each are not mutually exclusive to the library group to which it belongs. M-learning has a part to play in addressing the problem of student persistence and retention in higher education. Students who cannot afford a PC do manage to purchase a mobile phone. The devices which enable m-learning may help alleviate the problematic digital divide; a protracted battle on the unequal dispersion of technological and information resources, of which librarians cannot win with their current technology and collection resources taxed and shrinking. (Hahn 2008)

In modern healthcare, practitioners are pressured to manage the high acuity of their patients' health challenges and an increasing pace of practice in addition to coping with an explosion of knowledge and technology. (Kenney et al. 2009) Practitioners are forced to access and process clinical data efficiently by drawing on current resources to support safe care and evidence-informed practice at the point-of-care. Moreover, client care is increasingly shifting to the community, an environment where resources are not readily accessible. These ongoing changes are also influencing models of Nursing practice education. Increasingly, indirect supervision models are used as Nursing Education programs admit more students to address the nursing shortage and as students are placed in community and other nontraditional clinical practice environments. Although modern communications technologies might assist to decrease student isolation, students are often unable to access these technologies in the practice setting. In addition, supervising nurses are facing increasing workloads and find it challenging to also supervise student nurses. This is compounded by decreased peer and instructor communication with the result that students are left more isolated in practice. New approaches and tools to support the teaching and learning of nursing students at a distance are needed and mobile
learning (m-learning) is one possible response. M-learning has the potential to bring the instructor, peers and resources together virtually at the point-of-care, especially when indirect supervision models are used, to support the students’ safety and evidence-informed practice. (Kenney et al. 2009)

Stockwell (2008) mentioned that “Research into mobile phone learning at this point appears to present somewhat of a paradox.” “On the one hand, there are teachers and researchers who are enthusiastic about using mobile technologies, believing that providing means for learners to study “anytime, anywhere” will encourage more frequent and integral use of learning technologies as opposed to the more occasional use generally associated with computer laboratories.” Many see mobile learning as the next generation of learning, one that is to be readily embraced by the learners using technologies that most already possess. Others do take a more tempered approach and argue that the widespread acceptance of communication technologies in non-learning contexts does not necessarily mean that they will be effective or valued in educational contexts. Despite this, these teachers and researchers take an optimistic viewpoint towards the use of mobile phones for language learning, as attested to by the steadily growing body of research. Investigation of these studies does, for the most part, show that the vast majority expects learners to use their mobile phones, often simply on the premise that they own one, and learners are rarely given a choice to opt out of taking part in such a study. On the other hand, in contrast to this, there are those who hold to a more pessimistic approach, pointing out the many factors that impede their introduction into language learning environments. (Stockwell 2008)

The use of mobile devices has seen explosive growth in recent years. Looking at several mobile learning and teaching applications that are currently being deployed and evaluated, one can conclude that m-learning can significantly compliment e-learning by creating an additional channel of access for mobile users with mobile devices such as hand phones, PDAs, and pocket PCs. The mobile networks can enable learners to learn anytime and anywhere. However, before one can judge and evaluate the effectiveness of m-learning, learning modules suitable for such devices need to be available and used in mobile environment To meet the requirements of different mobile devices existing applications would need to create separate instances of the content and do not use the same content that is available for PC based applications. This creates problems of duplication of efforts, double maintenance and problems of versioning control. Consequently the creation of such modules should not be a duplicated effort but the mechanisms need to be developed by which the same content can be rendered on both PC and mobile platforms by seamlessly adapting to the device and user profiles. (Goh 2006)

Museums attempt to create a learning environment by using digital technologies to produce and deliver knowledge. According to Tien-Yu (2006), “The resulting learning environment exists both onsite as digital interactive content, and online on web” He added that the rapid evolution of information and communication technologies encourages museums worldwide to develop mobile learning solutions by creating extra channels for users with mobile handheld devices to supplement conventional docent and audio guides, and current digital technologies. Many studies have indicated that mobile learning presents a chance to revolutionize the way that museums interact with visitors. Some applications designed for mobile devices can enhance visitor experience in museums. However, most mobile learning projects for museums, particularly in Taiwan, have not successfully developed of onsite tour guide applications for exhibitions. A friendly interface, attractive application, multimedia presentation and interactive are major concerns in such projects. Very few projects combine museum-wide content and services with related domains, applications and projects to create a ubiquitous, proactive and adaptive learning service. Therefore, most relevant knowledge cannot be integrated and reused; the learning content is uniform and constrained to particular domains; the learning environment is restricted in locations of museums, and services cannot be adapted to individual learners. (Tien-Yu 2006)

EMPIRICAL STUDIES IN MOBILE LEARNING

An empirical study by (Suki et al.2007) examined how the usage of mobile phones for m-learning differs between heavy and light mobile phone users. Heavy mobile phone users are hypothesized to have access to/subscribes to one type of mobile content than light mobile phone users, to have less frequent access to, subscribe to or purchase mobile content within the last year than light mobile phone users, and to pay less money for mobile learning, its content and mobile games than light mobile phone users. Design/methodology/approach - Data were collected from 436
respondents. An analysis of variance (ANOVA) test was run to examine how the usage of mobile phone for m-learning differs between heavy and light mobile phone users in terms of access/subscription to several types of mobile content, frequency of access to, subscription to, and purchase of mobile content within the last year, and maximum amount of money paid for mobile learning, its content and mobile games. Findings - Significant differences can be identified when comparing the usage of mobile phones for m-learning between heavy and light mobile phone users. It was found that heavy mobile phone users access/subscribe to more than one type of mobile content than light mobile phone users, have more frequent access to, subscription to and purchase of mobile content within the last year than light mobile phone users, and to spend more money on mobile learning, its content and mobile games than light mobile phone user.

Another study by (Dirk et al. 2010) introduces concept mapping as a structured participative conceptualization approach to identify clusters of ideas and opinions generated by experts within the domain of mobile learning. Utilizing this approach, the paper aims to contribute to a definition of key domain characteristics by identifying the main educational concepts related to mobile learning. Design/methodology/approach - A short literature review points out the attempts to find a clear definition for mobile learning as well as the different perspectives taken. Based on this an explorative case study was conducted, focusing on the educational problems that underpin the expectations on mobile learning. Using the concept mapping approach the study identified these educational problems and the related domain concepts. The respective results were then analyzed and discussed. Findings - The chosen approach produced several means to interpret the experts' ideas and opinions, such as a cluster map illustrating and structuring substantial accordances. These means help to gain new insights on the emphasis and relation of the core educational concepts of mobile learning.

Supporting efficient data access in the mobile learning environment is becoming a hot research problem in recent years, and the problem becomes tougher when the clients are using light-weight mobile devices such as cell phones whose limited storage space prevents the clients from holding a large cache. (Qing et al. 2009) A practical solution is to store the cache data at some proxies nearby, so that mobile devices can access the data from these proxies instead of data servers in order to reduce the latency time. However, when mobile devices move freely, the cache data may not enhance the overall performance because it may become too far away for the clients to access. In this article, we propose a statistical caching mechanism which makes use of prior knowledge (statistical data) to predict the pattern of user movement and then replicates/migrates the cache objects among different proxies. We propose a statistical inference based heuristic search algorithm to accommodate dynamic mobile data access in the mobile learning environment. Experimental studies show that, with an acceptable complexity, our algorithm can obtain good performance on caching mobile data. (Qing et al. 2009)

Mobile service innovations are crucial for the long-term success of companies operating in turbulent and uncertain environments. These innovations need to be introduced at a rapid pace while at the same time companies have to absorb market information during the new mobile service development. Vera et al. (2003) constructed a conceptual framework on the critical antecedents of project learning and time-to-market during new mobile service development. Extensive case study research involving four innovation projects was performed in a leading Dutch telecommunications company. With respect to project learning, the research findings indicate the crucial influence of aflexible decision architecture, project team memory, a high information awareness and a good fit between information requirements and capabilities. Both innovative and coordinative communications are required throughout the service innovation process. With regard to time-to-market, the research results point to the essential impact of project complexity, top management support, information power of suppliers and technological synergy. Finally, a medium level of project learning is the ideal condition for a fast time-to-market during mobile service innovation.

Abdul Karim et al. (2010) investigated the adoption and appropriation of mobile phone (MP) technologies by building on the technology appropriation theories. The paper also looks into the choice of MP use through various attractors, the purposes of MP use and the extent of use of various MP applications and features by the targeted users. This paper also explores the influences of age, gender, and occupation type on MP appropriation. Design/methodology/approach - The paper used a survey method in order to achieve the intended objectives. The staff (academic and non-academic) and students of three academic faculties of a university in Malaysia were used as the study's population. A sample of 201 was selected and used for the purpose of this paper. Findings - The result of the
paper allows us to describe important elements of MP appropriation and explore the influence of individual characteristics such as gender, age and occupation on different patterns of MP use through our conceptualization of appropriation. It is found that all of the individual characteristics investigated were significantly related with the MP appropriation and use. Research limitations/implications - Limitations in this paper are related to the ability of the result to be generalized to other user groups as well as other user groups at other institution of higher learning. More research needs to be conducted to ensure the robustness of the findings by comparing with other users. Practical implications - The results of the paper are expected to assist in understanding the use of MPs across different ages and occupation and serve as a mechanism in guiding the development of MP applications and design by service providers and manufacturers, respectively; as well as in aiding policy formulation on MP use at the work place. Originality/value - The paper has taken a different approach from the commonly applied IT adoption and acceptance model in understanding MP use. The rationale for the use of appropriation theory from the study can contribute to similar areas with similar types of technology applications.

Mark et al. (1998) conducted a survey of some recent connectionist approaches to the design and development of behavior based mobile robots. The research is analyzed in terms of principal connectionist learning methods and neurological modeling trends. Possible advantages over conventionally programmed methods are considered and the connectionist achievements to date are assessed. A realistic view is taken of the prospects for medium term progress and some observations are made concerning the direction this might profitably take. This paper has explored the idea that connectionist learning is the key to achieving levels of intelligence and cognition required for useful autonomous task performance by mobile robots. It has considered the debate over whether the existence proof of natural neural control systems able to function in situated domains should be used as a basis merely for behavioral emulation (i.e. designing systems “from scratch” as Brooks has mainly done) or whether it is necessary to abstract from certain structural levels in order to lay a substrate from which the functions necessary for complex behavior patterns could have more realistic prospects of emerging. Essentially this mirrors the debate between alien AI and human AI.8

Abstract Interaction design of mobile systems is a complex activity because it requires considering new usability and user experience aspects in order to exploit the peculiar characteristics of mobile devices, such as their pervasive and ubiquitous nature. Ardito et al. (2009) discussed issues about designing, developing and evaluating mobile systems. Italy has a rich cultural heritage, and the focus in this study is on the design of systems that enable interactive exploration of historical sites, not only for enhancing the user experience but also for learning purposes. The experience of the researchers at the Interaction, Visualisation and Usability lab, University of Bari, Italy, in designing a mobile learning system, called Explore!, which supports young students learning ancient history during a visit to archaeological parks, is reported. The evaluation of Explore! through systematic field studies shows that the adopted approach is able to transform the visit to archaeological parks into a more complete and culturally rich experience. This paper has discussed issues concerning design and evaluation of mobile systems. Interaction design is a complex activity, and designers must consider various factors, such as who is going to use the products, how these products will be used and where they will be used, but also how emotions work during the interaction with a system. Designing for mobile devices is even more difficult because other aspects, specific of such devices, must be taken into account. The experience of the researchers at the IVU lab, University of Bari, Italy in designing a mobile learning system, called Explore!, is reported. Explore! Supports young students to learn ancient history during a visit to archaeological parks. Human–computer interaction and software engineering experts, domain experts, representative of end users and end users themselves have participated in the whole interaction design process. Of fundamental importance were the evaluation sessions with end users and the field studies.

A study by Rossi et al. (2007) aimed to look at the development of a mobile information system for a tobacco wholesaler in the Baltic region, focusing on understanding the issues involved in deploying a new system into a traditionally operating work force in a transition economy. Design/methodology/approach - To overcome the problems in billing cycle in the case company, an action research approach was used to develop a new process for sales documentation and employed advanced mobile technologies in the process. The research approach followed an action research cycle of diagnosis, action planning, action taking, evaluation, and specifying learning. Findings - The findings highlight the importance of the change in the mind-sets of the employees when using a new technology, and the
obstacles of the use of advanced mobile technologies. They also stress the problems encountered while considering more or less experimental technologies for day-to-day operations of a business. The key finding is that new technology is much easier to take into use, when it is accompanied with a small but visible enhancement in both the work routines of individuals and the operations of the organization. Practical implications - The Amer case highlights the importance of considering technological implications of mobile technology already in planning stage of the new solution. Furthermore, there are special features related to mobility including, for instance, usability of advanced mobile technology, reliability, transmission mode, level of auxiliary devices and user adaptability. Originality/value - This paper describes a unique case of business use of mobile technology in connection to re-engineering field sales processes, and can be of use both to practitioners as well as researchers and students in the field.

Adopting technological service innovations entails substantial learning effort requiring information and guidance from the provider. A recent study by Laukkanen et al. (2010) investigated the effect of information and guidance offered by a bank on five adoption barriers - usage, value, risk, tradition, and image - in a mobile banking context. The measurement development and hypotheses were based on consumer resistance theory and the earlier literature on Internet and mobile banking. A large empirical study on bank customers with 1,551 effective observations was conducted. The measure items were validated by measurement model and hypotheses were tested using structural equation modelling. The results show that the information and guidance offered by a bank has the most significant effect on decreasing the usage barrier, followed by image, value and risk barriers respectively. The information and guidance showed no effect on the tradition barrier. This paper provides further understanding of how the information and guidance of a bank affect consumer attitudes and resistance in particular, on mobile banking. It also has implications for management in overcoming resistance to mobile banking.

An empirical study by Karen et al. (2005) examined employed mixed methodologies to explore students' use of mobile computing devices and its effects on their motivation to learn, engagement in learning activities, and support for learning processes. Data collected from students in four elementary and two seventh grade science classes in Northeast Ohio included usage logs, student work samples, student and teacher interviews, and classroom observations. Findings highlight the personalization of learning afforded by such devices both in terms of individuals and individual classroom cultures, as well as their usefulness in extending learning beyond the classroom. They also suggest that increased motivation due to mobile device use leads to increases in the quality and quantity of student work.

BUILDING A NEW SUCCESS MODEL FOR MOBILE LEARNING

The DeLone and McLean (2002) Information Systems (IS) Success Model offers the following hypothesis:

H1: Information Systems (IS) system quality, information quality and service quality will have a positive effect on the use of the system (and intention to use) as well as the user satisfaction of individual investors of online stock trading information systems.

H2: System use (and intention to use) as well as user satisfaction, are going to affect each other and will have a positive effect in introducing net benefits to the users of online stock trading information systems.

H3: The net benefits of online stock trading information systems are going to have a positive effect on system use (and intention to use) as well as the user satisfaction of individual stock investors.
The technology acceptance model of Davis (1989) assumes that perceived usefulness and perceived ease of use of a particular technology affects the attitude towards using this technology. That attitude will affect the behavioral and intention to use which will result in the actual use of the technology.

In this study, we introduce a new model of Mobile Learning Success based on the McLean & DeLone Information System Success Model and the Technology Acceptance Model of Davis (1989). The Mobile Learning Success Model assumes that the system quality, information quality and service quality of the Mobile Learning technology will affect its users’ perceived usefulness and ease of use. The perceived usefulness and perceived ease of use will by their turn affect the attitude towards using this technology. The attitude towards using mobile learning will affect user satisfaction as well as behavioral intention to use, which will result in actual use of the technology (mobile learning) and produce a net impact on individual users and the society. The system quality, information quality and service quality of mobile learning will be affected by moderating factors such as gender, age, experience and voluntariness use. The new success model of mobile learning is depicted in figure 3 below.
CONTRIBUTION OF THE STUDY

This study is among the first of its kind to develop a success model for Mobile Learning. It examines information systems success avenues such as system quality, information quality and service quality combined with perceived usefulness and ease of use and they affect the attitudes of the user of mobile learning resulting in intention to use and change in behavioral use that leads to actual use and net benefits of the technology (mobile learning). The study opens the way for further studies to examine this success new model in different setting where mobile learning is used.

REFERENCES

Heath, Barbara; Herman, Russell; Lugo, Gabriel; Reeves, James; et al, “Developing a Mobile Learning Environment to Support Virtual Education Communities: Technological Horizons in Education”, T.H.E. Journal 32. 8 (Mar 2005): 33-34,36-37.

Kenny, Richard F; Van Neste-Kenny, Jocelyne M C; Park, Caroline L; Burton, Pamela A; Meiers, Jan “Mobile Learning in Nursing Practice Education: Applying Koole's FRAME Model”, Journal of Distance Education (Online) 23. 3 (2009): 75-95.

Liu, Yong; Han, Shengnan; Li, Hongxiu, “Understanding the factors driving m-learning adoption: a literature review”, Campus - Wide Information Systems 27. 4 (2010): 210-226.

Stockwell, Glenn, “Investigating learner preparedness for and usage patterns of mobile learning”, ReCALL : the Journal of EUROCALL 20. 3 (Sep 2008): 253-270

